Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

- 1 Investigating the Impact of Aerosol Deposition on Snow
- 2 Melt over the Greenland Ice Sheet Using a Large-Ensemble
- 3 Kernel
- 4 Yang Li¹, Mark G. Flanner¹
- ¹ Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
- 7 **Correspondence to:** Y. Li, yanglibj@umich.edu
- 9 **Abstract**

6

- 10 Accelerating surface melt on the Greenland Ice Sheet (GrIS) has led to a doubling of
- 11 Greenland's contribution to global sea level rise during recent decades. Black
- 12 carbon (BC), dust, and other light absorbing impurities (LAI) darken the surface and
- enhance snow melt by boosting the absorption of solar energy. It is therefore
- 14 important for coupled aerosol-climate and ice sheet models to include snow
- darkening effects from LAI, and yet most do not. In this study, we conduct several
- 16 thousand simulations with the Community Land Model (CLM) component of the
- 17 Community Earth System Model (CESM) to characterize changes in melt runoff due
- 18 to variations in the amount, timing, and nature (wet or dry) of BC deposition on the
- 19 GrIS. From this large matrix of simulations, we develop a kernel relating runoff to
- the location, month, year (from 2006-2015), and magnitudes of BC concentration
- 21 within precipitation and dry deposition flux. BC deposition during June-August
- 22 causes the largest increase in annually-integrated runoff, but winter deposition

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

23 events also exert large (roughly half as great) runoff perturbations due to re-24 exposure of impurities at the snow surface during summer melt. Current BC 25 deposition fluxes simulated with the atmosphere component of CESM induce a 26 climatological-mean increase in GrIS-wide runoff of \sim 8 Gt/yr, or +6.8% relative to a 27 paired simulation without BC deposition. We also provide linear equations that relate the increase in total runoff to GrIS-wide wet and dry BC deposition fluxes. It 28 29 is our hope that the runoff kernel and simple equations provided here can be used 30 to extend the utility of state-of-the-art aerosol models.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

31

52

© Author(s) 2018. CC BY 4.0 License.

1 Introduction

32 The Greenland Ice Sheet (GrIS) holds the equivalent of about 7 m of sea level 33 rise (Kintisch, 2017). During recent decades, the accelerating decline of the GrIS has 34 doubled Greenland's contribution to global sea level rise to about 0.74 mm per year 35 (Shepherd et al., 2012; Rignot and Kanagaratnam, 2006; van den Broeke et al., 2009; 36 Kintisch, 2017). Mass loss from the GrIS is predicted to raise sea level by more than 37 20 cm by 2100 (Rignot et al., 2011; Dumont et al., 2014), imposing tremendous 38 effects on global society. 39 Ice loss from the GrIS is caused by many physical and biological factors, 40 including: 1) increase of air temperature over the Arctic region, which accelerates 41 surface melting; 2) declining surface albedo, which can be caused by a variety of effects including increased melt area, enhanced snow metamorphism, and 42 accumulation of light-absorbing impurities (LAI) (Tedesco et al., 2016; Box et al., 43 44 2012; Dumont et al., 2014; Keegan et al., 2014; Shimada et al., 2016; Polashenski et 45 al., 2015); and 3) calving of icebergs and submarine melting due to ice dynamics and changes of ocean temperature (Krabill et al., 2004; Zwally et al., 2002; Dumont et al., 46 47 2014). Since 2005, surface melting has likely contributed more to ice loss than 48 iceberg calving (Kintisch, 2017). Sources of LAI include black carbon (BC), mineral 49 dust, and algae and bacteria growing on the wet surface of the ice sheet, all of which 50 darken the surface, boost the absorption of insolation and enhance snow melt. 51 BC is a major anthropogenic pollutant originating from fossil fuel combustion,

open biomass burning, and biofuel use, and is a key LAI because its solar

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

53 absorptivity is extremely high (e.g., Bond et al., 2013). Previous climate modeling studies simulate annual warming in the Arctic region with the inclusion of BC in 54 snow (Flanner et al., 2007; Flanner et al., 2009; Hansen and Nazarenko, 2004; 55 Hansen et al., 2005; Jacobson, 2004), and find BC/snow forcing induces a global 56 57 temperature response about three times greater than equal forcing from CO₂ (Flanner et al., 2007). BC influences snow coverage by warming the atmosphere, 58 59 reducing surface insolation through "dimming", and reducing snow reflectance 60 through darkening caused by BC deposition to snow surface. Globally, the darkening 61 effect within snow increases solar heating of snowpack, and exceeds the loss of 62 absorbed energy from dimming, causing a positive net surface forcing and snowpack melting (Flanner et al., 2009). Melting snow also tends to retain BC 63 aerosols, which darken the surface more and increase absorption of insolation (e.g., 64 65 Doherty et al., 2013). Therefore, it is important for coupled aerosol-climate and ice 66 sheet models to include BC darkening effects, and yet most do not. 67 Global BC emissions from fossil fuel and biofuel combustion have increased 68 dramatically during the industrial era. Since the early 20th century, BC emissions also shifted spatially, decreasing in North American and Europe but increasing in 69 70 Asia (Bond et al., 2007; Bond et al., 2013). Both the spatial pattern of emissions and 71 the circulation features that are coincident with emissions can strongly effect the 72 amount of BC reaching the Arctic and depositing to the GrIS (Doherty et al., 2010; Thomas et al., 2017; Jiao et al., 2014). 73 74 In this study, we develop a BC deposition-snow melt kernel using the 75 Community Earth System Model (CESM) to investigate changes in snow melt and

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

76 surface runoff due to variations in the amount and timing of aerosol deposition on 77 the GrIS. More than 5000 simulations are conducted with the Community Land 78 Model (CLM) component of CESM, driven with a large range of wet and dry BC 79 deposition fluxes to determine relationships between snow melt perturbation and 80 deposition amount occurring in different months. The final kernel product is resolved by type of BC deposition (wet or dry), deposition amount, deposition 81 82 month, and deposition year ranging from 2006-2015. It is our hope that this kernel 83 will benefit regional and global aerosol modeling communities by allowing them to 84 estimate GrIS snow melt and surface runoff perturbations associated with different 85 aerosol deposition fluxes.

2 Methods

86

88

89

90

91

92

93

94

95

96

97

87 **2.1 Simulation design**

We use the Community Earth System Model (CESM) version 1.2.2, and run the offline Community Land Model (CLM) (Oleson et al., 2013) version 4.5 with prescribed wet or dry BC deposition in the snow sub-model to study the effects of BC deposition on snow melt and runoff from Greenland. Our motivation for using CLM in this offline configuration is that (1) it reduces noise associated with ocean and atmosphere variability, enabling clearer identification of the runoff signal caused by snow perturbations, and (2) the simulations are computationally cheap, allowing us to explore a large parameter space. We drive the simulations using meteorological forcing data from the Climatic Research Unit and National Centers for Environmental Prediction (CRUNCEP) (Viovy, 2012) over the period 2006-2016.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

© Author(s) 2018. CC BY 4.0 License.

CRUNCEP data cover the global land surface at a spatial resolution of a $0.5^{\circ} \times 0.5^{\circ}$, and are provided with relatively low latency, allowing us to explore conditions over the recent past. In CLM, the representation of terrestrial snow, including over ice sheets, is based loosely on the SNTHERM model (Jordan, 1991) and is described in detail by Oleson et al., 2013. Snow albedo and solar absorption within each snow layer are simulated with the Snow, Ice, and Aerosol Radiative Model (SNICAR), which accounts for solar zenith angle, albedo of the substrate underlying snow, mass concentrations of LAI (black carbon, dust, organic carbon, and volcanic ash), and ice effective grain size. In general, CLM/SNICAR represents five vertical snow layers, and accounts for variations in LAI concentration due to dry and wet deposition, particle flushing and retention with melt water, snow sublimation, and layer combinations and divisions (Oleson et al., 2013). Dry BC deposition from the atmosphere occurs through gravitational settling and turbulent mixing, primarily transferring hydrophobic BC to the surface, while wet BC deposition occurs via precipitation and only affects hydrophilic BC in the model. CLM maintains mass burdens of both hydrophilic BC and hydrophobic BC within each snow layer, with each species having unique optical properties and meltwater removal efficiencies. Deposited particles are assumed to be instantly mixed and homogeneous within the surface snow layer, which does not exceed 2cm in thickness. The particles are added after the computation of inter-layer water fluxes, thus preventing particles in the top layer from being washed out immediately before radiative calculations. Particle masses are redistributed vertically in each time step proportionately with snow melt through the snow column, scaled by the species-specific melt scavenging

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

efficiency, and snow layer combination and subdivision. The masses carried out with meltwater drainage through the bottom snow layer are permanently lost from the snowpack, and are not maintained within the model (Oleson et al., 2013). For each simulation used to generate the kernel relating melt runoff to BC deposition, we prescribe uniform concentrations of BC within precipitation or uniform dry deposition fluxes over the ice sheet for a period of one month, and quantify perturbations to snow and melt runoff for one year or more following the period of deposition. 23 unique BC concentrations in precipitation (e.g., snow) are prescribed to provide wet BC flux in the CLM. We use a wide range of wet BC concentrations (from 1 ng $g^{-1} \sim 500$ ng g^{-1}) with logarithmic spacing, aiming to cover historically observed BC concentrations over the Greenland region (Figure 1) and potential severe episodes associated (e.g.,) with extreme fire activity. For example, measured values of BC in Greenland snow during 2012-2014, collected from snow pits across a long transect, averaged 2.6 ng g-1 (Polashenski et al., 2015). Peak values throughout the depth of the snow pits averaged 4 ng g⁻¹ and 15 ng g-1 in 2012 and 2013, respectively, and the largest single measurement was 43 ng g-1. Ice core measurements from D4 dating back to 1788 show annual-mean concentrations peaking in the early 20th century at \sim 12.5 ng g⁻¹, mean concentrations of 2.3 ng g-1 during 1952-2002, and occasional monthly-mean peaks exceeding 50 ng g-1 due to biomass burning events (McConnell et al., 2007). Correspondingly, the maximum dry BC deposition flux is calculated as the product of the maximum wet BC concentration (500 ng g⁻¹) and the mean monthly snowfall $(1.75 \times 10^{-5} \text{ mm s}^{-1})$ over an 11-year (2006-2016) CESM simulation. We prescribe 24

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

144 unique dry BC fluxes (0.01 ng m⁻² s⁻¹-8.80 ng m⁻² s⁻¹) with logarithmic spacing in our 145 study (Figure 1). 146 With each prescribed BC deposition value, we perform 12 simulations with 147 specified BC deposition month from January to December in each deposition year. 148 Each simulation starts from January in the deposition year, and extends to one full 149 year after the deposition month in order to study the annually integrated BC effects. 150 We then repeat these simulations for ten years (2006-2015) to generate a 151 climatological product and explore the magnitude of interannual variability in melt 152 perturbations due, for example, to differences in precipitation and near-surface air temperatures. In summary, we perform 2,760 simulations (23 wet BC 153 154 concentrations × 12 deposition months × 10 deposition years) to study the effects of 155 wet BC deposition, and 2,880 simulations (24 dry BC fluxes × 12 deposition months 156 × 10 deposition years) to study the effects of dry BC deposition. 120 simulations (12 157 deposition months × 10 deposition years) without BC deposition are also performed 158 as parallel control/base runs from which to derive the perturbations induced by BC 159 deposition. 160 2.2 Simulation length evaluation based on top-snow layer BC concentration 161 To evaluate the importance of simulation length for the purposes outlined, we 162 focus on BC concentration in the top snow layer because properties of this layer 163 dominate the bulk solar radiative properties of the snowpack. In Figure 2, we 164 examine the mean distribution of BC concentration in the top snow layer over 165 Greenland after maximum wet and dry BC deposition fluxes occur in January and 166 June. These contours are averaged over ten years to show a climatological state.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

Top-layer BC concentrations after wet BC deposition show higher values in the center and south margin of Greenland (Figure 2a, b, e, f), which matches the general precipitation pattern over the GrIS, with elevated precipitation amount in the center and south of GrIS. Meanwhile, higher top-layer BC values occur over the north of Greenland after dry BC deposition (Figure 2c, d, g, h), as lower precipitation in these regions enhances the effect of dry deposition. Also, we find lower concentrations induced by the maximum wet BC (Figure 2a, b, e, f) than by the maximum dry BC deposition (Figure 2c, d, g, h). Top-layer BC concentration decreases rapidly only one month after the deposition month for both winter and summer deposition (i.e., from January to February with January deposition in Figure 2a-d, and from June to July with June deposition in Figure 2e-h), as new snowfall dilutes the contaminated snow. The rapid decrease in BC concentration supports the notion that a one-year simulation length should capture most of the time-integrated effect from a deposition event. To verify this, we also perform two 11-year (2006-2016) simulations with the maximum wet BC deposition occurring in April and October of the first year, to evaluate the long-term variation of top-layer BC concentration. In these long-term simulations, we find top-layer BC concentrations decrease rapidly within a one-year period after both spring and fall depositions (Figure 3). We also see, however, that residual BC reappears at the surface in subsequent summers because of snow melting and associated accumulation of impurities at the top of the snowpack (Doherty et al., 2013). In the model, this occurs because melt scavenging ratios for both types of BC are less than 1, meaning that proportionately less BC moves down vertically in the column than meltwater. As we will see, summer re-

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

appearance of impurities at the snow top has a non-negligible impact on the annually-integrated runoff perturbation, but the peaks in subsequent years are less than 1/20 of the BC concentrations in the deposition month, indicating that the one-year simulation setup is reasonable to capture the major portion of the total BC influences.

3 Results and Discussion

Deposited BC to snow causes a darkening effect and enhances snow melt and Greenland runoff. Here, we first show variations of top-snow layer BC concentrations, and then examine total GrIS runoff perturbation induced by BC deposition.

3.1 BC concentration in the top snow layer

We investigate the climatological (i.e., averaged over ten simulations covering 2006-2015) 1-year evolution of top-snow layer BC concentration averaged over Greenland for different deposition months. Figure 4 depicts the temporal evolution of top-layer BC concentration for the maximum wet and dry BC fluxes from our matrix of simulations. For all months of deposition, top-layer concentrations decrease rapidly as fresh snow covers the contaminated surface. Top-snow layer concentrations of dry-deposited BC generally decrease more slowly than those of wet-deposited BC. One reason for this behavior during summer months is that dry-deposited BC is assumed to be hydrophobic and have a lower meltwater scavenging efficiency, reducing the rate at which it is carried away by melting water. We also see, however, that some winter-deposited BC can persist in the top layer until, or

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

234

212 even re-appear during, the summer melt season, indicating that BC deposition in 213 non-melting seasons can also be important for GrIS melting. Re-exposure of 214 previously deposited BC occurs as overlying snow melts and flushes through the 215 snow, removing some but not all of the underlying impurities and eventually 216 exposing the dirty snow layer at the surface. 217 We also investigate how top-layer BC concentration varies with different BC 218 deposition values, and how this variation evolves over one year following 219 deposition (Figure 5 and Figure 6). For all deposition months, top-snow layer BC 220 concentration increases, as expected, with increasing BC deposition flux. The 221 relationship between top-layer BC concentration and BC deposition value is nearly 222 linear, although we find indications of saturation at later times with dry BC 223 deposition (e.g., as in Figure 6h-l). Figure 7 summarizes top-layer BC concentration 224 variation with deposition amount at different times (0-11 months since deposition) 225 averaged over all the deposition months. With this averaging, we find that top-layer 226 BC concentrations decrease monotonically from month 0 to month 11. Again, we 227 find slower decrease in the dry deposition simulations than in the wet deposition 228 simulations. With wet BC deposition, the rate of decrease slows down after 3-6 229 months, which could be due to the summer peaks resulting from snow melting and 230 BC integration (Figure 4). 231 3.2 Temporal variation of GrIS total runoff 232 We define total runoff in CLM as the summation of surface runoff, sub-surface 233 drainage and runoff from glacier surface. We first examine the seasonal and interannual variation of GrIS total runoff, integrated over the entire GrIS, in the base run

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

inter-annual variation. Annual-integrated total runoff is ~120 Gt per year, with the highest value of ~140 Gt in 2014 (Figure 8b). Compared with satellite gravity measurements during 2005-2010 showing Greenland is losing mass at a rate of \sim 229 Gt/yr (169-290 Gt/yr), of which 50-70% is lost through surface melt (Vaughan et al., 2013), the simulated total runoff in the base run in our study is within a reasonable range. We then calculate perturbed total runoff due to BC deposition as the difference in runoff between simulations with BC deposition and paired base simulations without BC deposition. We select three wet BC deposition values and three dry BC deposition values to illustrate the seasonal and inter-annual variations of perturbed total runoff (Figure 9). We note that different scales are used in the panels of Figure 9, which shows that higher deposition causes more total runoff. We also find clear inter-annual variations for different deposition amounts and months. The variations of perturbed total runoff in Figure 9 follow the variation of total runoff in the base run (Figure 8) in general, especially for the perturbed simulations with wet BC depositions, indicating that BC deposition could have greater effect in warmer years, when more of the ice sheet is near the melting temperature. To remove the effect of yearly variation, we also investigate the climatological (i.e., averaged over ten simulations spanning 2006-2015) 1-year evolution of total runoff increase due to BC deposition starting from different deposition months. Again, we examine total runoff increase induced by maximum wet and dry BC depositions to understand general behavior associated with very large

without BC deposition (Figure 8). Total runoff shows clear summer peaks and some

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

perturbations, for which the signal is much larger than noise. As shown in Figure 10, we find two summer peaks of total runoff increase, with the second peak caused by the re-exposure of BC during the summer after deposition. We also find total runoff perturbation is the largest in July for all months of deposition, followed by August, due to higher temperature in summer.

3.3 GrIS total runoff variation with deposition amount

As represented by Figure 9, higher deposition amount causes larger total runoff increase. Here, we examine total runoff perturbation caused by all deposition amounts, and how total runoff distributes over Greenland. Figure 11 and Figure 12 show climatological mean (2006-2015) annually integrated total runoff increase caused by June BC deposition via wet and dry processes, respectively. June deposition is selected for these figures because of its high potential to impact summer melt. Although BC is well distributed over the whole GrIS (Figure 2), total runoff perturbations are largely confined to the low elevation margins with both wet and dry BC deposition (Figure 11 and Figure 12), as these remain the only areas warm enough in the model simulations for substantial melt to occur, which is consistent with the Tedesco, 2007 study. We note that the spatial distribution of model melt will be sensitive to surface air temperature and insolation, the latter of which can vary substantially between re-analysis products. Runoff effects of dry BC deposition show similar patterns as impacts from BC in precipitation. We find that small fluxes of BC via dry deposition are not as effective as similar deposition fluxes of BC in precipitation, and we attribute this to the higher light absorptivity (and hence radiative forcing per unit mass) of hydrophilic BC than of hydrophobic BC.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

281 The former is assumed to be coated with weakly-absorbing sulfate and hence its 282 mass absorption cross-section is about 50% larger than that of uncoated 283 hydrophobic BC (Flanner et al., 2007). 284 Figure 13 summarizes the variation of total runoff perturbation versus 285 deposition amount for different deposition months. The maximum BC deposition 286 perturbs total runoff by up to \sim 20% (24 Gt) in the wet BC deposition simulations, 287 although we note that continent-wide fluxes of this magnitude (500 ng g-1 in 288 precipitation) are much larger than ever observed on Greenland. With a modest 289 deposition concentration (e.g., 5 ng/g), the runoff perturbation is $\sim 0.4\%$ (~ 0.5 Gt). Different deposition months cause annually integrated total runoff perturbation to 290 291 vary by 40-60% (12 Gt/yr in the maximum BC deposition case). Also, we find BC 292 deposition in June and July induces the largest annually integrated total runoff 293 increase. To further verify the most influential deposition month, we select five wet 294 BC and five dry BC deposition values, and plot total runoff increase versus 295 deposition month, shown in Figure 14. Figure 14a shows annual integrated total 296 runoff from the base run, starting from different months, serving as a reference for the perturbations shown in Figure 14b-f. For different deposition amounts from low 297 298 to high (Figure 14b-f), BC deposition in summer (i.e., June, July and August) causes 299 the highest annual total runoff increase. With higher deposition (Figure 14e-f), June 300 deposition generates the largest annual total runoff for both dry and wet BC 301 deposition, whereas with lower deposition amounts the month of maximum impact 302 can be June or July. As noted earlier, however, deposition during non-summer 303 months also causes substantial melt and runoff perturbations, owing to the melt-

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

induced re-surfacing of impurities during summer in the ablation zone.

4 Evaluation and application of the kernel product

We turn now to evaluating the kernel product and advising a straightforward way in which it can be applied to realistic aerosol deposition fluxes. We perform ten one-year CLM simulations with spatially and temporally-varying wet or dry BC deposition fluxes occurring in randomly selected years and months, and we evaluate the accuracy of the kernel product using total GrIS BC deposition amount and total runoff from these new simulations (the "evaluating simulations"), compared with total runoff from the kernel for equivalent deposition fluxes. The evaluating simulations use prescribed wet and dry BC deposition fields that were generated from a global aerosol run with CAM (Lamarque et al., 2010). In different evaluating simulations, the prescribed BC deposition fields are multiplied by factors ranging from 2-50 for wet BC deposition and 2000-20000 for dry BC deposition to provide different BC deposition amounts within the range of wet or dry deposition in the kernel. High scaling factors are applied to dry/hydrophobic BC deposition simulations because the prescribed dry BC deposition from CAM is very low and within the noise regime. We also perform two ten-year (2006-2015) evaluating simulations with both CAM prescribed wet and dry BC deposition fluxes turned on throughout the whole simulations, to examine short-term, long-term and climatological one-year integrated total runoff effects. BC deposition fluxes in one of the ten-year evaluating simulations are multiplied by a factor of 5 to provide a high deposition event and are left at unperturbed (i.e., realistic) values in the other

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

distributions. Therefore, the evaluating simulations provide a variety of scenarios with distinct BC deposition amounts and distributions to evaluate performance of the kernel. Figure 15 shows maximum, mean and minimum one-year integrated total runoff increase versus BC deposition amount from the kernel product, with results from the evaluating simulations overlaid on the kernel lines. With varying BC deposition amount and distribution, including with combined wet and dry BC deposition fluxes, results from the evaluating simulations are mostly within the total runoff ranges of our kernel product for both wet and dry BC deposition. In the evaluating simulations with combined wet and dry BC depositions, hydrophobic BC fluxes are very low (<1/100 of wet BC fluxes), therefore, we treat all BC deposition as wet/hydrophilic BC, and overlay the results on the wet deposition curves. We note CAM simulated BC deposition from the 1 time evaluating run is comparable with measured values of BC in Greenland snow and ice core measurements (Polashenski et al., 2015; McConnell et al., 2007). The increases of one-year integrated total runoff from the ten-vear evaluating simulations with realistic deposition exhibit wide ranges, for example, with a minimum of ~4 Gt in the first deposition year (2006) to a maximum of ~10 Gt, and with a minimum of ~14 Gt in the first year to a maximum of ~40 Gt in the simulation with 5 times BC fluxes. The climatological (i.e., averaged over 10 years) total runoff perturbations (~8 Gt/yr and ~30 Gt/yr in the default and 5 times simulations, respectively) caused by prescribed combined wet and dry BC deposition are about double the first-year total runoff

simulation. Also, different deposition years and months indicate different BC

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

349

350 year evaluating simulations and the long-term effects of the reappearance of 351 residual BC at the surface as described in section 2.2. 352 Because the mean and maximum kernel curves in Figure 15 provide estimates 353 of BC induced total runoff within a reasonable range, we parameterize these curves 354 to provide a simple application of our kernel product. GrIS-wide melt perturbations 355 are relatively linear with BC deposition amount, with linear fits to the mean kernel curves for wet and dry BC deposition fluxes of, respectively: 356 357 Δ TOTALRUNOFF = 4.498e5 * Δ wetBC, (1) 358 Δ TOTALRUNOFF = 3.062e5 * Δ dryBC, (2) 359 and with linear fits to the maximum kernel curves of: 360 Δ TOTALRUNOFF MAX = 9.322e5 * Δ wetBC, (3) 361 Δ TOTALRUNOFF_MAX = 6.348e5 * Δ dryBC, (4)362 where Δ TOTALRUNOFF is the mean increase in one-year integrated total runoff (kg 363 yr⁻¹), ΔTOTALRUNOFF_MAX is the maximum increase in one-year integrated total 364 runoff (kg yr⁻¹), and Δ wetBC and Δ dryBC are total wet and dry BC deposition fluxes to the GrIS (kg yr⁻¹). Unique relationships for wet and dry deposition arise, again, 365 366 because of differences in optical properties and melt-induced removal efficiencies of 367 hydrophilic and hydrophobic BC. Linearity in the relationship between runoff and 368 BC deposition is encouraging because we have neglected coincident darkening from 369 other types of LAI (e.g., dust, algae). In environments where darkening from other 370 LAI is not too great, the runoff-BC relationships derived here should be valid, 371 though we acknowledge that the incremental effect of BC will be lower in snow that

integrations, which is due to continuous month by month depositions in the ten-

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

is heavily laden with other impurities.

The bulk relationships shown above represent the simplest application of our kernel product, allowing a rough estimation of runoff perturbation caused by Greenland-wide wet and dry BC deposition fluxes. Based on the evaluations in Figure 15, the mean curves (i.e., equations (1) and (2)) from the kernel product tend to provide a conservative estimate of total runoff, whereas the maximum curves (i.e., equations (3) and (4)) represent a more realistic approximation of total runoff induced by BC deposition that occurs continuously and with varying spatial distribution. Ideally, gridcell-by-gridcell fluxes should be matched to the kernel to account for spatial differences in melt associated with elevation and other conditions (Figure 11 and Figure 12), but at the low end of deposition flux we see considerable noise at the individual pixel and deposition month level, especially for wet deposition fluxes that can be subject to anomalies associated with low precipitation amounts in a given month. To ameliorate this, for typical present-day deposition fluxes we recommend matching month-specific, but spatially-integrated deposition fluxes or concentrations with the associated Greenland-wide kernel values. Finally, although this product only includes BC, we suggest that it could be extended to include other LAI species through a simple scaling that accounts for the ratio of mass-specific absorption between the species of interest and the BC explored here. Rationale for this is that radiative forcing and melt perturbation will scale roughly linearly with absorptivity, at least for relatively low and moderate burdens of LAI. The mass-specific visible band absorption cross-sections assumed

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

395

396

397

398

399

400

401

402

403

404

in our study for hydrophilic (via wet deposition) and hydrophobic (via dry deposition) BC are 7.5 and 11.3 m² g⁻¹, respectively. The only other species-specific property affecting results from this study is the meltwater scavenging coefficient, which is assumed to be 0.2 for hydrophilic BC and 0.03 for hydrophobic BC (Flanner et al., 2007). Given relatively large uncertainty in this parameter (Doherty et al., 2013; Qian et al., 2014), we suggest applying the hydrophilic (wet deposition) kernel to all hydrophobic species and the hydrophobic (dry deposition) kernel to all hydrophobic species, along with appropriate scaling of optical properties.

5 Conclusions

405 integrated runoff perturbation from BC deposition on snow. The simulation matrix includes variations in deposition flux, deposition month and year, and nature of the 406 407 deposition (wet or dry). From this matrix we produce a large-ensemble kernel that 408 relates BC deposition fluxes to GrIS runoff perturbations. 409 In the month after deposition, top-snow layer BC concentration decreases 410 rapidly due to fresh snow coverage, but then increases somewhat in the ablation 411 zone during the following summer due to melt-induced re-exposure of the 412 contaminated snow. Accordingly, the total runoff increase induced by BC deposition 413 is substantial for both summer and winter deposition, though with peak impacts 414 associated with June and July deposition. Impacts from winter deposition suggest 415 that winter emissions, associated for example with biomass heating use, should not 416 be neglected as potential contributors to increased summer melt. Also, we find most

In this study, ~6,000 simulations are performed to investigate annually

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

of the runoff increase occurs along the margins, and especially on the southern margin of Greenland, with little sign of melting in the center of the GrIS where it is rarely warm enough. Inter-annual variations in total runoff in the base and BC perturbed simulations indicate that BC deposition can generate more impact in warmer years, when more of the ice surface is near the melting temperature. In summary, higher BC deposition amount leads to higher total runoff. We do not find a clear sign of runoff saturation caused by high BC deposition values in our study. Model-generated deposition fluxes associated with realistic BC emissions induce a climatological-mean (2006-2015) GrIS-wide runoff increase of 8 Gt/yr (+6.8% perturbation), which corresponds to 0.022 mm/year of global sea level rise. We also suggest simple, linear equations that crudely relate GrIS-wide wet and dry BC deposition fluxes to annually-integrated runoff perturbation, and provide links to the full spatially-varying kernel dataset so that users can derive more accurate estimates of melt perturbation (e.g., resolved by seasonal timing) from deposition fluxes. We also suggest that the kernel results can be applied to other LAI species via simple scaling of the mass absorption cross-section. Our hope is that these data will extend the utility of state-of-the-art aerosol models.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

435	Acknowledgments
436	This research was supported by the Department of Energy (DOE) grant DE-
437	SC0013991. The kernel product from model runs in this paper have been archived
438	by the corresponding author, Yang Li (University of Michigan; yanglibj@umich.edu),
439	and are available upon request through e-mail.
440	

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

441 References

- Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and
 Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from
 energy-related combustion, 1850–2000, Global Biogeochemical Cycles, 21, n/a-n/a, 10.1029/2006GB002840, 2007.
- 447 Bond, T. C., Doherty, S. I., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. I., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., 448 449 Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., 450 Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, 451 Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and 452 Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific 453 assessment, Journal of Geophysical Research: Atmospheres, 118, 5380-5552, 454 10.1002/jgrd.50171, 2013.
- Box, J., Fettweis, X., Stroeve, J., Tedesco, M., Hall, D., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821-839, 2012.
- Doherty, S., Warren, S., Grenfell, T., Clarke, A., and Brandt, R.: Light-absorbing impurities in Arctic snow, Atmospheric Chemistry and Physics, 10, 11647-11680, 2010.
- Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt, R. E., and Warren, S. G.:
 Observed vertical redistribution of black carbon and other insoluble light absorbing particles in melting snow, Journal of Geophysical Research:
 Atmospheres, 118, 5553-5569, 2013.
- Dumont, M., Brun, E., Picard, G., Michou, M., Libois, Q., Petit, J. R., Geyer, M., Morin, S.,
 and Josse, B.: Contribution of light-absorbing impurities in snow to Greenland's
 darkening since 2009, Nature Geoscience, 7, 509, 10.1038/ngeo2180
- 468 https://www.nature.com/articles/ngeo2180#supplementary-information, 2014.
- Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate
 forcing and response from black carbon in snow, Journal of Geophysical
 Research: Atmospheres, 112, n/a-n/a, 10.1029/2006JD008003, 2007.
- Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P.: Springtime warming and reduced snow cover from carbonaceous particles, Atmospheric Chemistry and Physics, 9, 2481-2497, 2009.
- Hansen, I., and Nazarenko, L.: Soot climate forcing via snow and ice albedos,
- Proceedings of the National Academy of Sciences of the United States of America, 101, 423-428, 2004.
- Hansen, J. e., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G., Russell, G.,
- Aleinov, I., Bauer, M., and Bauer, S.: Efficacy of climate forcings, Journal of
- 480 Geophysical Research: Atmospheres, 110, 2005.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

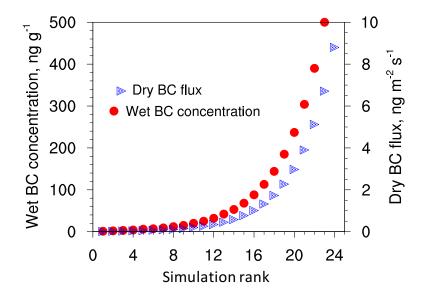
© Author(s) 2018. CC BY 4.0 License.

- Jacobson, M. Z.: Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity, Journal of Geophysical
- 483 Research: Atmospheres, 109, 2004.
- Jiao, C., Flanner, M., Balkanski, Y., Bauer, S., Bellouin, N., Berntsen, T., Bian, H.,
- Carslaw, K., Chin, M., and De Luca, N.: An AeroCom assessment of black carbon in
- Arctic snow and sea ice, Atmospheric Chemistry and Physics, 14, 2399-2417, 2014.
- Jordan, R.: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89, COLD REGIONS RESEARCH AND ENGINEERING
- 490 LAB HANOVER NH, 1991.
- Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet,
- 493 Proceedings of the National Academy of Sciences, 111, 7964-7967, 2014.
- Kintisch, E.: Meltdown, in, American Association for the Advancement of Science, 2017.
- Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B., Frederick,
 E., Manizade, S., Martin, C., and Sonntag, J.: Greenland ice sheet: increased coastal
 thinning, Geophysical Research Letters, 31, 2004.
- Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D.,
- Liousse, C., Mieville, A., and Owen, B.: Historical (1850–2000) gridded
- anthropogenic and biomass burning emissions of reactive gases and aerosols:
- 502 methodology and application, Atmospheric Chemistry and Physics, 10, 7017-503 7039, 2010.
- McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S.,
- Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J. D.: 20th-century industrial
- 506 black carbon emissions altered arctic climate forcing, Science, 317, 1381-1384, 2007.
- Oleson, K., Lawrence, M., Bonan, B., Drewniak, B., Huang, M., Koven, D., Levis, S., Li, F.,
 Riley, J., and Subin, M.: Technical description of version 4.5 of the Community
 Land Model (CLM), 2013.
- 511 Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R., Lai, A. M.,
- Schauer, J. J., Shafer, M. M., and Bergin, M.: Neither dust nor black carbon causing
- apparent albedo decline in Greenland's dry snow zone: Implications for MODIS
- C5 surface reflectance, Geophysical Research Letters, 42, 9319-9327, 2015.
- Qian, Y., Wang, H., Zhang, R., Flanner, M. G., and Rasch, P. J.: A sensitivity study on
 modeling black carbon in snow and its radiative forcing over the Arctic and
 Northern China, Environmental Research Letters, 9, 064001, 2014.
- Rignot, E., and Kanagaratnam, P.: Changes in the velocity structure of the Greenland Ice Sheet, Science, 311, 986-990, 2006.
- 520 Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. T.:
- Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise, Geophysical Research Letters, 38, 2011.
- 523 Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs,
- K. H., Bromwich, D. H., Forsberg, R., and Galin, N.: A reconciled estimate of ice-
- sheet mass balance, Science, 338, 1183-1189, 2012.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018

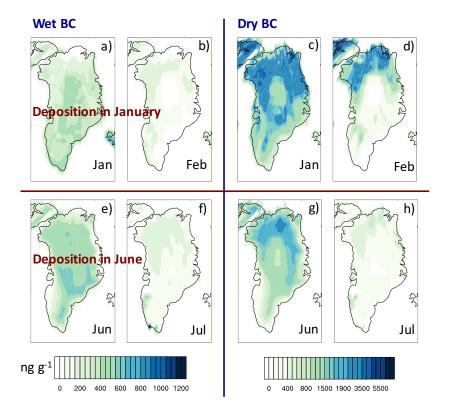
Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.


- 526 Shimada, R., Takeuchi, N., and Aoki, T.: Inter-annual and geographical variations in 527 the extent of bare ice and dark ice on the Greenland ice sheet derived from MODIS 528 satellite images, Frontiers in Earth Science, 4, 43, 2016.
- Tedesco, M.: Snowmelt detection over the Greenland ice sheet from SSM/I
 brightness temperature daily variations, Geophysical Research Letters, 34, 2007.
- Tedesco, M., Doherty, S., Fettweis, X., Alexander, P., Jeyaratnam, J., and Stroeve, J.: The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100), Cryosphere (The), 10, 477-496, 2016.
- Thomas, J. L., Polashenski, C. M., Soja, A. J., Marelle, L., Casey, K., Choi, H. D., Raut, J. C.,
 Wiedinmyer, C., Emmons, L. K., and Fast, J.: Quantifying black carbon deposition
 over the Greenland ice sheet from forest fires in Canada, Geophysical Research
 Letters, 2017.
- van den Broeke, M., Bamber, J., Ettema, J., Rignot, E., Schrama, E., van de Berg, W. J.,
 van Meijgaard, E., Velicogna, I., and Wouters, B.: Partitioning recent Greenland
 mass loss, science, 326, 984-986, 2009.
- Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P.,
 Murray, T., Paul, F., and Ren, J.: Observations: cryosphere, Climate change, 2103,
 317-382, 2013.
- Viovy, N.: CRU-NCEP Version 4, available at:
- http://dods.extra.cea.fr/data/p529viov/cruncep/V4_1901_2012/ last access: August 2012.
- Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K.: Surface
 melt-induced acceleration of Greenland ice-sheet flow, Science, 297, 218-222,
 2002.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018 © Author(s) 2018. CC BY 4.0 License.

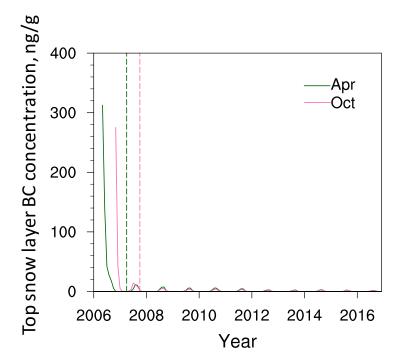
Figure Captions


Figure 1. Prescribed values of BC concentrations in precipitation (red) and dry deposition fluxes (blue) applied in the CESM modeling studies. Spacing between values is logarithmic.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

Figure 2. Ten-year (2006-2015) averaged hydrophilic BC concentration associated with wet deposition (a, b, e, f) and hydrophobic BC concentration associated with dry deposition (c, d, g, h) in the top snow layer. The contour maps show concentrations caused by January deposition (a-d) and June deposition (e-h), associated with the maximum wet and dry deposition scenarios depicted in Figure 1.


Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

566

567

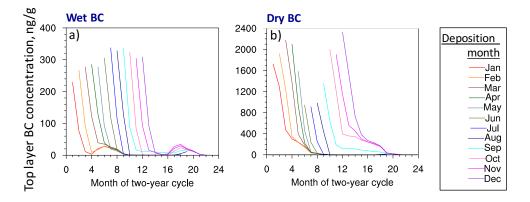
568

569

570

571

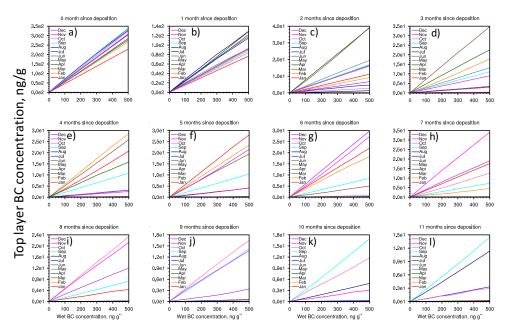
Figure 3. Temporal evolution of hydrophilic BC concentration in the top snow layer averaged over the Greenland region from two 11-year (2006-2016) simulations with wet BC deposition occurring in April and October of the first year. The BC concentration in precipitation is the maximum value shown in Figure 1. Dashed lines represent the ends of one year since different deposition months.


Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

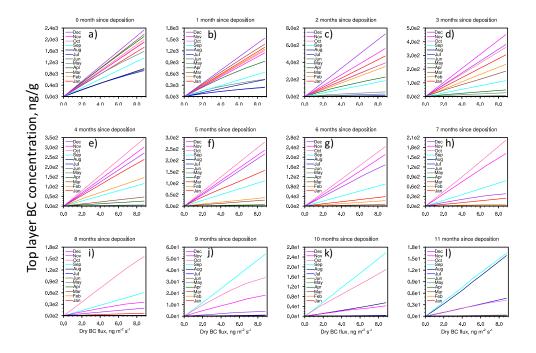
© Author(s) 2018. CC BY 4.0 License.

Figure 4. Temporal evolution of hydrophilic BC concentration (a) and hydrophobic BC concentration (b) in the top snow layer averaged over the Greenland region from the simulations with the maximum wet and dry BC deposition, respectively. Each line starts from the BC deposition month, extends one year, and represents the mean time series from 10 simulations that start in each year from 2006-2015.


Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.


Figure 5. Hydrophilic BC concentration in the top snow layer vs. concentration of BC in precipitation shown at different times (0-11 months, panels a-l) since deposition. The top-snow layer concentrations are averaged over the Greenland region and over ten one-year simulations beginning in years 2006-2015. Different line colors represent different deposition months.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018

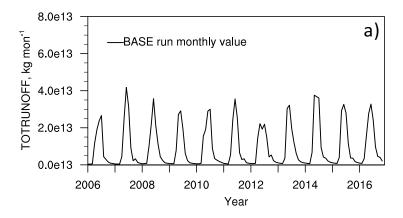
© Author(s) 2018. CC BY 4.0 License.

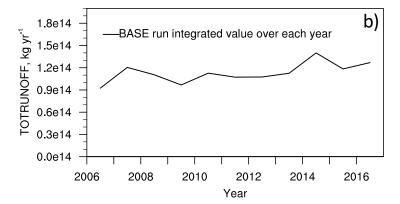
Figure 6. Same as Figure 5, but showing hydrophobic BC concentration in the top snow layer vs. BC dry deposition flux.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.


Figure 7. Hydrophilic BC concentration in the top snow layer vs. concentration of BC in precipitation (a), and hydrophobic BC concentration in the top snow layer vs. BC dry deposition flux (b) shown at different times (0-11 months) since deposition. The top-snow layer concentrations are averaged over the Greenland region, over all the deposition months and over ten one-year simulations beginning in years 2006-2015.


Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

603

604

605

Figure 8. Monthly (a) and annually integrated (b) timeseries of total runoff from

Greenland in the Base run without BC deposition.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018

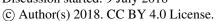
© Author(s) 2018. CC BY 4.0 License.

607

608

609

610


611

612

Figure 9. Monthly timeseries of the increase in total Greenland runoff resulting from BC deposition. Values of BC concentrations in precipitation (a, c, e) and dry deposition fluxes (b, d, f) are shown in each plot. Each line starts from the BC deposition month and extends one year. Different line colors represent different deposition months.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

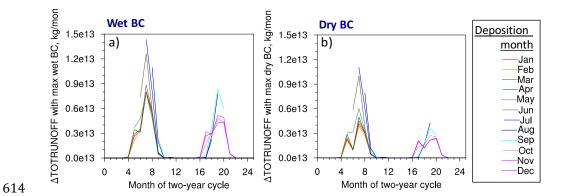
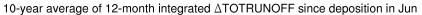


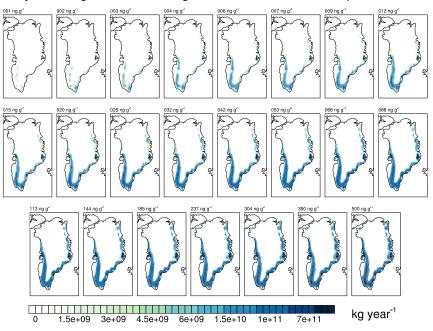
Figure 10. Temporal evolution of ten-year (2006-2015) averaged total runoff increase resulting from BC deposition, summed over the entire Greenland region from the simulations with the maximum wet (a) and dry (b) BC deposition. Each line starts from the BC deposition month and extends one year.

619

615

616


617


Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018

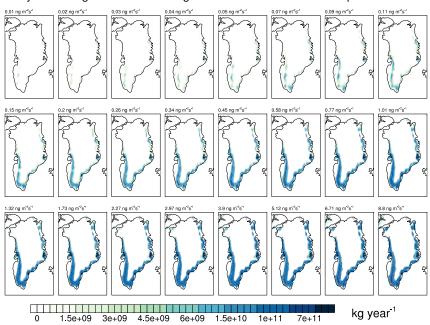
© Author(s) 2018. CC BY 4.0 License.

620

621

Figure 11. Ten-year average of annually-integrated total runoff increase resulting

from different concentrations of BC in precipitation, deposited only during June.

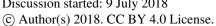

The average is over ten one-year simulations starting in each year from 2006-2015.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 July 2018 © Author(s) 2018. CC BY 4.0 License.

10-year average of 12-month integrated $\Delta TOTRUNOFF$ since deposition in Jun

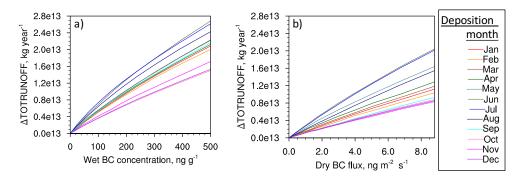
625

Figure 12. Same as Figure 11, but resulting from different dry deposition fluxes of


627 BC in June.

628

629


Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

631

632

633

634

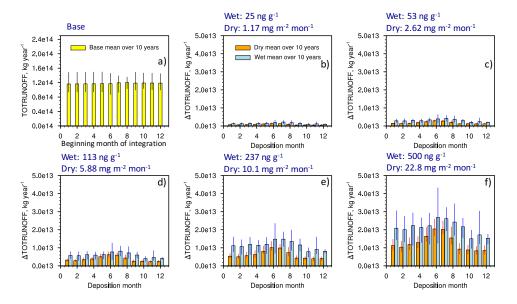
635

636

637

Figure 13. Increase in total Greenland runoff resulting from BC deposition integrated over one year starting from the month of BC deposition vs. concentration of BC in precipitation (a) and vs. BC dry deposition flux (b). The runoff values are summed over the Greenland region and averaged over ten one-year simulations beginning in years 2006-2015. Different line colors represent different deposition months.

638


Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

Figure 14. Total runoff in the Base run without BC deposition (a) and the increase in total Greenland runoff resulting from BC deposition (b-f), integrated over one year starting from the month of BC deposition. The bars show mean values and the whiskers depict the full range of values over all ten simulations that each start in a different year from 2005-2016. Values of BC concentrations in precipitation and dry deposition fluxes are shown in the title of each plot (b-f).

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-542 Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 9 July 2018

© Author(s) 2018. CC BY 4.0 License.

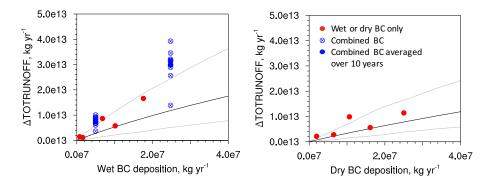


Figure 15. Increase in total Greenland runoff resulting from BC deposition integrated over one year starting from the month of BC deposition vs. total wet (a) and dry (b) BC deposition mass flux over the entire GrIS. The runoff values are summed over the Greenland region and averaged over all deposition years and deposition months. Black lines show mean total runoff values, and grey lines show maximum and minimum values from the entire matrix of simulations. Red dots represent explicitly-simulated total runoff from the evaluating simulations with prescribed spatially and temporally-varying wet or dry BC deposition fluxes in randomly selected months and years. Blue hollow circles represent simulated total runoff from the evaluating simulations with prescribed combined BC deposition fluxes integrated over each year of the ten-year simulations. Blue dots show averages of the hollow circles.